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Pointmutations in the phosphorylation domain of the Bcr-Abl fusion
oncogene give rise to drug resistance in chronic myelogenous
leukemia patients. These mutations alter kinase-mediated signaling
function and phenotypic outcome. An information theoretic analysis
of the correlation of phosphoproteomic profiling and transforma-
tion potency of the oncogene in different mutants is presented. The
theory seeks to predict the leukemic transformation potency from
the observed signaling by constructing a distribution of maximal
entropy of site-specific phosphorylation events. The theory is
developed with special reference to systems biology where high
throughput measurements are typical. We seek sets of phosphor-
ylation events most contributory to predicting the phenotype by
determining the constraints on the signaling system. The relevance
of a constraint is measured by howmuch it reduces the value of the
entropy from its global maximum, where all events are equally
likely. Application to experimental phospho-proteomics data for
kinase inhibitor-resistant mutants shows that there is one dominant
constraint and that other constraints are not relevant to a similar
extent. This single constraint accounts for much of the correlation of
phosphorylation events with the oncogenic potency and thereby
usefully predicts the trends in the phenotypic output. An additional
constraint possibly accounts for biological fine structure.

high-throughput measurements | information theory | phospho
proteomics | signal transduction networks | systems biology

Biological systems use complex networks of molecular events,
such as signaling and transcription, to regulate cellular out-

come. Experimental biology is now able tomeasure up to thousands
of these events from individual samples, inspiring efforts to identify
both the events most contributory to cellular phenotypes and the
nature of how multiple regulatory mechanisms are coordinated.
Such understanding is crucial to the next generation of single agent
and mixture molecularly targeted therapeutics. Kinase-mediated
signaling is central to the execution of cellular programs and to
communication with the environment and other cells. Aberrant
signaling is implicated in many diseases and is a hallmark of cancer
(1). Mass spectrometry- and antibody-based phospho proteomics
allow the global profiling of the state of the signaling network (2–5).
These approaches permit site-specific monitoring of phosphor-
ylation and, thus, provide discrimination of the sometimes multiple
and differential regulatory phosphorylation events on individual
proteins. Here, we develop and apply an information theoretic
maximal entropy analysis of the correlation of signaling events to
cellular outcome to identify the dominant constraints that describe
and predict the phenotypic output.
There are equivalent ways of motivating the choice of a dis-

tribution of maximal entropy (6). From an information theoretic
point of view it is the distribution that is consistent with the data at
hand and is otherwise least informative. From a statistical point of
view, a distribution of maximal entropy is the most probable
distribution in that it is the distribution that is observed in the
largest number of experiments (the Boltzmann view; see also ref.
6). For our purpose the statistical, or strictly speaking statistico-
mechanical, point of view has also a thermodynamic analog (7).
When maximizing the entropy but constraining the distribution to

be consistent with what we do know, there arise “parameters” that
act as thermodynamic potentials. A well known example is the
chemical potentials (8) that ensure the conservation, at equili-
brium, of the number of molecules of a given species. Technically
the thermodynamic potentials arise as Lagrange multipliers that
are introduced in the process of seeking a maximum of the
entropy subject to constraints. We use the terms parameters and
“multipliers” interchangeably.
The principle of entropy maximization has been applied as an

approach toward understanding biological networks. Examples
include the extraction of genetic interaction networks from micro-
array data, the inference of the modularity of genomic networks, or
for information processing in neural networks (9–18). The present
application differs in two ways. First, our approach has a thermody-
namic flavor:We seek to identify constraints that force a lower value
of the (maximal) entropy and, thereby, allow us to specify the direc-
tionsof responseof the signaling system toperturbations (principleof
Le Chatelier; ref. 19). Second, our approach directly addresses an
essential characteristic of systems biology experiments—namely that
the number of experiments is large compared with the number of
phenotypic outputs, and so the system is statistically sampled, or, in
other words, it is overdetermined. This usage contrasts with themore
common situation in which the approach of maximal entropy is
applied to an underdetermined system. An additional motivation for
the present application is the partial least squares regression-based
seminal contributions to systems biology analysis by Janes et al. (4,
20). Although our general approach and various technical details
differ, the spirit is the same.Wewant to predict phenotypic outcome
from signalingmeasurements.We report below that one (or possibly
two) constraints, computed only from the data, suffices to semi-
quantitatively predict the relative trends in the phenotypic output.
We also report results for the “leave one out” cross-validation pro-
cedure, LOOCV (21), where the data, taken together with N-1 out-
puts, are used to predict the missing N’th output.
The method introduced in this paper is applied toward

understanding the phenotypic implications of phospho proteo-
mics data measured at steady state for point mutations (equals
isoforms) of the Bcr-Abl oncogenic kinase (Fig. 1). These iso-
forms were discovered because they confer Abl inhibitor drug
resistance in chronic myelogenous leukemia (CML) patients (22)
and cause gain or loss in transformation potency (5). The trans-
formation potency, also known as the growth rate, is the inverse of
the doubling time for cells containing the oncogene. The signaling
network was profiled (5) by using tyrosine phospho-peptide
enrichment followed by mass spectrometry, yielding quantitative
measurements of site-specific phosphorylation events on Bcr-Abl
and downstream signaling proteins as shown in Fig. 1.
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The site phosphorylation data as measured by mass spectrom-
etry (see SI Appendix and ref. 5), is represented by a matrix
denoted as X and shown in Fig. 1. It is a rectangular matrix with
n = 12 columns, one column for each mutant of Bcr-Abl. Each

row is the intensities of a site-specific phosphorylation event
measured for the N different mutants. The identity of the peptide
that is shown in each row is identified in the table in SI Appendix,
sectionVIII of the SI. The number of rows, P=63 in our example,
is the number of quantitative measurements of such events that
have been assessed (5) to be the most reliable. Many signaling
proteins have more than a single phosphorylation site. For the 63
phosphorylation events measured at high confidence there cor-
respond 49 proteins.
In addition to the phosphorylation data matrix X there is an

output row vector Y, with 12 components. Each entry in Y is the
transformation potency (outcome phenotype) for the corre-
sponding phosphorylated Bcr-Abl isoform (Fig. 1). The theory
that we set up aims to recover the values of the transformation
potency by identifying the relevant thermodynamic, or Lagrange,
parameters. Lagrange parameters that have relatively small
numerical values are those that fine-tune the fit of the noise—
i.e., they contain little or no biological information. By com-
paring the influence of a Lagrange multiplier against exper-
imental uncertainties it is possible to test when small Lagrange
multipliers are de facto zero (23).
For the general case, the outputYwill be a rectangularmatrix in

which each row represents a different possible outcome (i.e.,
expression rate of a particular protein, a parameter related to
apoptosis, cell motility, etc.) (4, 20) and not a single row vector as
is the case here. It can then be that even when X is given, residual
uncertainty about the output Y remains. In the Supplemental
Information, we show that also for the underdetermined case one
can use the method of maximal entropy. We do so by relating it to
the measure of the information that X provides about Y when Y is
not fully determined (see SI Appendix, Fig. S1).
The statement “X over determines Y” has both a mathematical

and a biological/experimental meaning. The mathematical
requirement is a necessary condition. For a full rank matrix X to
fully determine Y it is necessary that the number, P, of events
that are measured is larger than the number, N, of different
initial conditions in the experiment (here the number of phos-
phorylated isoforms of Bcr-Abl). There is also a biological/
experimental requirement that ensures sufficiency. This con-
dition is determined by the nature of the biological system and
the signal-to-noise quality of the experimental results: Given the
data matrix X of P rows and N columns, we require that the
columns of X are linearly independent. At the current state of
characterization of phosphorylation networks, this condition is to
be checked by examining concrete experimental results. The
simplest test is that the N by N matrix XTX has N nonzero
eigenvalues. Here the superscript T means the transpose of a
matrix with the implication that the nonzero eigenvalues have to
be positive. A (near) zero eigenvalue indicates (near) linear
dependence of the N experimental conditions. Even for a well-
designed experiment it is worthwhile to verify explicitly that the
rank of X is N and not less.
We find the rank by diagonalizing XTXand sorting the eigen-

vectors by the size of the corresponding eigenvalues. For the
phosphorylation data matrix of Fig. 1, there is one dominant
eigenvalue, an order of magnitude larger than the others. For the
Gaussian distribution that we will use and provided that the data
X is mean centered on the rows, the eigenvalues of XTX are the
Lagrange multipliers of the constraints in the method of maximal
entropy. When only one eigenvalue is sufficient to provide a
realistic approximation we say that there is one dominant con-
straint. The dominant constraint is the eigenvector correspond-
ing to the largest eigenvalue. For the data of Fig. 1, the dominant
constraint represents almost 60% of the norm of the phenotypic
output as measured for 12 different oncogenes, with two addi-
tional constraints ≈85% is recovered and the balance is within
the error bars of the measured output.

Fig. 1. Heat map representation of the measured phosphorylation data
matrix X. Each one of the n = 12 columns of X is for a particular Bcr-Abl
oncogene isoforms as identified. Each row of the phosphorylation data X
represents relative levels of a phosphorylation event of a particular signaling
protein. Several proteins have multiple phosphorylation sites (see SI
Appendix). The row-wise mean-centered mass spectrometry ion current
peak integration values are as indicated by the green to red scale bar. The
relative transformation potency, Y, for the same 12 oncogenes ranges from
1 (yellow) to 0.42 (blue). The experimental determination of transformation
potency is described in ref. 5 and in SI Appendix, and the numerical data for
X and Y is also provided. See Fig. S9 for a row variance normalized heat map
representation of the X matrix.
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That one constraint is sodominant suggests that theremay beone
leading control (or regulatory) mechanism toward the phenotypic
output. As shown in Fig. S2, the dominant constraint is quite
localized about one particular phosphorylation site, BCRpY644, in
theBCRprotein. This site is clearly suggested as a target for further
intervention.At the same time, the second and thirdmost important
constraints are localized on other peptides of the Bcr-Abl proteins
and, in particular, on peptides that belong to the Bcr-Abl kinase
ATP binding loop. If, by hand, we reduce the measured intensity of
theBCRpY644peptide, then theseother peptides, and inparticular
Abl1pY264, Abl1pY257, and Abl1pY253, become dominant (see
SI Appendix). It is then these sites whose phosphorylation best
predicts the phenotype. We have experimentally confirmed con-
tributions to Bcr-Abl-mediated transformation by the Abl1pY257
and pY253 phosphorylation events (5).
A declaration about the background assumptions that are

made in the procedure of maximal entropy is discussed in section
II. The analysis of the data matrix X is presented in section III.
Prediction of the output by using constraints derived from the
data are in section IV. The results of the Leave One Out Cross
Validation, LOOCV, procedure are mentioned in section V and
reported in SI Appendix. Technical comments on the notion of
the information that the data provides about the output is dis-
cussed in section VI. Our summary is section VII.

II. Declaration Regarding Maximal Entropy of Biological
Signaling States
The first stage in an application of a procedure of maximal
entropy is to specify the limiting, and not necessarily biologically
pertinent, situation for which the entropy is at its global max-
imum. Then, as relevant constraints are imposed on the system,
the entropy value will be lowered, because relevant constraints,
by definition, limit the range of possible results. Experimental
noise can limit the ability to distinguish between relevant and
irrelevant constraints, in that it can preclude deciding whether
the addition of yet another constraint is warranted, because the
accompanying decrease in entropy may be below the exper-
imental noise (23).
Each entry in the data matrix X is a measurement of a sig-

naling event for particular conditions. We declare that in the
absence of constraints that require otherwise, we take all these
measured values to be equally probable. In this case, a heat
matrix map of X should be uniform in color at maximal entropy.
The experimental heat map (Fig. 1) is clearly not uniform in
color. It therefore contains biological and chemical information.
The role of this theory is to determine how many constraints are
necessary to capture this information. A secondary outcome is to
determine how much of the nonuniformity is possibly due to
noise. Technically, the expression for the entropy (in dimen-
sionless units) is

HðXÞ ¼ −∑PðXÞln PðXÞ; [1]

where the summation is over all of the possible values that X can
assume. Here,PðXÞis the probability of a particular data matrix X
(24) with details to follow in section III.
It is possible to argue that even when we do not know other-

wise, it is not reasonable to take all signaling events to be equally
probable. The reasoning is that often only relative phosphor-
ylation values are measured and, thus, unnormalized compar-
isons can be misleading, e.g., amino acid composition influences
ionization efficiency in mass spectrometry and binding affinity
influences antibody-based results. Until absolute quantitation is
common, it can be argued that one should scale the distinct
measurements in the raw data matrix; for example, by operating
on each row to make it mean centered and scaling each entry in
the row by the variance of the row as shown in SI Appendix and
refs. 4 and 25. Another argument for scaling encountered in

systems biology is that low abundance events can have notably
high biological relevance. For example, many regulatory proteins
(transcription factors, kinases) are expressed at relatively low
levels (as little as a few copies per cell) compared with structural
proteins (25, 26). The full implication of these views awaits the
further development of absolute quantitation methodologies.
See SI Appendix for how the concept of a prior distribution (27,
28) allows one to discuss these alternative views.

III. The Distribution of Maximal Entropy
X is a matrix whose dimensions are the number, P, of different
phosphorylation events, the row labels, times the number, N, of
different isoforms, the column labels. One can also regardX not as
amatrix but as a sample ofN readings of the column vectorXn of P
components, Xn≡ðX1n;X2n; . . . ;XPnÞT . n is a label of the onco-
genes, n ¼ 1; 2; . . . ;N, and the different oncogenes differ in their
phosphorylation strength and specificity. To characterize the dis-
tribution of phosphorylation events we make the assumption that
it is of maximal entropy subject to constraints. The simplest con-
straints are the given means and variances of the rows (equals the
phosphorylation events induced by different oncogenes) and the
covariances between rows of the X matrix as defined in Eq. 2.
We therefore seek a distribution of maximal entropy con-

strained by the values of the means and covariances (including
the variances) computed for the measured data matrix X. This
last sentence specifies how we derive the Gaussian distribution
that is given in Eq. 3 below.
We arrange the means to be zero by centering each row of the

data matrix X. For the covariances we encounter the basic reality
of data matrices provided by systems biology, namely that there
are more measurements than phenotypic outputs, n < P. There-
fore, the P by P covariance matrix XXT with elements indexed
by the phosphorylation events:

�
XXT�

pq¼ ∑
N

n¼1
ðXÞpnðXÞqn [2]

cannot be inverted. XXT is necessarily singular because its rank
cannot be higher than the smaller dimension of X, namely N. In
other words, XXTcan have no more than N nonzero eigenvalues.
As is well known (see e.g., refs. 6 and 29) the multivariate

distribution of maximal entropy subject to given means and
covariances is Gaussian. To explicitly write down a multivariate
Gaussian distribution P(X) for the matrix X we need to invert the
covariance matrix XXT as given in Eq. 2. This inversion cannot
be done because this matrix has at least N-P eigenvalues that
equal zero. A mathematical examination given in SI Appendix
(see also ref. 24) shows that under such circumstances, the rel-
evant covariance matrix is the N by NmatrixXTX. This matrix has
the same nonzero eigenvalues as XXT , the covariance matrix of
the data, and this result is central to our technical discussion.
Introducing the N column vectors of N components
Zi;  i ¼ 1; 2; . . . ;N that are computed as the eigenvectors of the
XTX matrix, XTXZi ¼ λiZi, we have as a final result the nor-
malized form of the multivariate Gaussian distribution

PðXÞ ¼
�
1=ð2πÞN=2jΣj1=2

�N
exp

�
−
1
2
  ∑

N

i¼1
ZT
i Σ

− 1Zi

�
: [3]

Σ is the diagonal N × N variance matrix, meaning that the entries
along its diagonal are the inverse of the eigenvalues λi; i ¼ 1; 2; ::;N
of the variance matrixΣ. jΣj is the determinant of Σ, and because Σ
is diagonal, jΣj is the product of the eigenvalues jΣj ¼ ∏iλi. The
eigenvalues are shown, vs. the running index i in Fig. 2.
The computation of the entropy of a multivariate Gaussian

distribution is well known (see, for example, ref. 29). The deri-
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vation is also given in ref. 24, where it is proven that the entropy
of the entire data matrix X is given by Eq. 4:

H
�
X
� ¼ 1

2
lnjΣj þ 1

2
Nlnð2πeÞ

¼ 1
2 ∑

N

i¼1
lnð2πe=λiÞ:

[4]

The explicit form for the entropy, Eq. 4 shows that one can rank
the eigenvalues of XTX by their size. Eq. 4 further shows that the
largest eigenvalue decreases the entropy the most. The ranking
by size is the order for the Lagrange multipliers of the con-
straints, the largest being the most relevant. If the rows of X are
mean-centered, the lowest eigenvalue for the 12 by 12 matrix will
be zero and it does not contribute to lowering the entropy. So we
keep only n = 11 terms in Eqs. 3 or 4. If there is a dominant
constraint, keeping just one term, N = 1, is sufficient.
Using the data matrix provided in SI Appendix and shown as a

heat map in Fig. 1, the Lagrange multipliers λi;   i ¼ 1; 2; . . . ;N
are determined as the eigenvalues of the N by N matrixXTX. The
results for the multipliers exhibit a separation in scale with one
large eigenvalue, one eigenvalue smaller by an order of magni-
tude and the rest even smaller (Fig. 2). The smaller eigenvalues
are very small compared with the large, i = 1, eigenvalue but are
sufficiently removed from zero to conclude that the N columns of
X are linearly independent. This result allows us to exactly pre-
dict the phenotypic data (see Eq. 5 below). That there is a
dominant constraint allows us to approximately predict the
phenotype with one data vector as shown in section IV.
We note without proof that if we mean center the rows of X

and also scale the entries of each row by the variance and only
then seek a distribution of maximal entropy, this procedure leads
to the same result as seeking a maximum of the entropy of the
distribution PðXÞ relative to a nonflat prior distribution P8ðXÞ
(27, 28) given as a product of independent Gaussian (or “nor-
mal”) distributions, each for the given mean and variance. This
factorized product is different from the correlated distribution as
given by Eq. 3 above. The origin of the difference is the cova-
riance of different phosphorylation events.

IV. Example: Predicting the Potencies from the Site-Specific
Phosphorylation Data
This section predicts the potencies from the data and then shows
that even just the one leading constraint already provides a
realistic inference. The inference can be improved by adding the
more marginal constraints. For each constraint i that we use, we
need one parameter (coefficient). The number of parameters

equals the number of constraints that we use (Eq. 4). When the
output is mean-centered, only the relative values of the potencies
are predicted. This prediction requires one fewer parameter
meaning that no parameter is needed when only the dominant
constraint is used in the prediction.
The diagonalization of the covariance matrix XTX specifies a

set of N (orthogonal and, by our choice, normalized) eigenvec-
tors Zi that we label by the same running index i as the eigen-
values. Each such eigenvector has N components. For a well
defined experiment, as long as the number, N, of conditions is
smaller than the number, P, of phosphorylation events, the rank
of the data matrix X can be N and there will be N linearly
independent eigenvectors ofXTX .
On algebraic grounds, when the rank of the covariance matrix

XTX is N, the N component vector Y of potencies (phenotypic
output) can be exactly represented, noise and all, as a linear
combination of the N linearly independent (orthogonal) vectors
Zi, i = 1, 2, . . ., N. Explicitly

Y ¼ ∑12
i¼1αi Zi: [5]

As a practical matter, it is our intention to reduce the upper limit
of the sum to a lower value so that there are fewer terms in Eq. 5
than the maximal value n = 12. The truncated sum need not be
an exact representation for Y. It is well known in linear algebra
that the error in such a truncation is minimized if we evaluate the
expansion coefficients as scalar products

αi ¼ ZT
i ·Y ¼ ∑12

n¼1 ZinYn: [6]

The length of Y isYT ·Y ¼ ∑12
i¼1jαij2. Because the eigenvectors are

normalized, ZT
i Zi ¼ 1, we can interpret jαij2 ¼ ðZT

i ·YÞ2=YT ·Y as
the correlation coefficient between the output vector Y and the N
eigenvectorsZi of theN byNmatrixXTX. In general, we expect that
there are fewer than N, say Neff in number, eigenvectors that are
relevant, Y ¼ ∑Neff

i¼1αi Zi. We find that for the experimental result
shown in Fig. 1, keeping even just one term,Neff ¼ 1, is realistic, as
seen in Fig. 3, because for the eigenvector that is associated with the
largest eigenvalue (equals the most relevant constraint equals the
constraint with the largest Lagrange multiplier, eigenvalue i =1)
α1=ðYT ·YÞ1=2 ¼ 0:76. The values of the other contributions are also
shown in Fig. 3, plotted such that the sum of all terms adds to unity,
namely the plot shows the sum of ðZT

j ·YÞ2=ðYT ·YÞ from j=1 to i vs.
the index i. Note that∑N

j¼1ðZT
j ·YÞ2=ðYT ·YÞ ¼ 1. Of this unity, 58%

(0.762) is contributed by the eigenvector of the largest eigenvalue,
i=1. The i= 2 term contributes 14%. The next eigenvector makes
an essentially negligible contribution. There is a small but finite
contribution from the i=8eigenvector. TheLagrange parameter of
this constraint is already fully two orders of magnitude smaller than
that for i=1 (Fig. 2). It ismarginal to conclude that the contribution
of the eighth eigenvector, 12%, is above the noise level. Three
constraints, i=1, 2, and 8, specify the output essentially to within its
experimental (5) error bars. One constraint, the one that is domi-
nant in describing the phosphorylation data, i= 1, is dominant also
in accounting for the phenotypic output as shown in Fig. 4.
In section VI, we show that the procedure as discussed here is

a direct conclusion from a maximal entropy consideration.
Fig. S2 shows the weight of the P different phosphorylation

events in the vector Zi, i = 1, that has the largest Lagrange
multiplier. The vector is localized about one particular phos-
phoevent, Bcr pY 644. The result is not typical of the other
eigenvectors. Mostly they are not so localized as seen in Figs. S3
and S4. Fig. S3 compares eigenvectors 1 and 11 where the latter
primarily represents noise (see also SI Appendix, Fig. S5). Fig. S4
shows the components for the three eigenvectors most correlated
with the output. Also, the second and third are localized on
the Bcr and Abl phosphopeptides and, in particular, on the P

Fig. 2. The Lagrange parameters for the constraints on the phosphorylation
data arranged in decreasing order starting at i = 1. (i is a running index that
sorts the eigenvalues of the covariance matrix). The Lagrange parameters
are computed as the eigenvalues of the 12 by 12 matrixXTX. The data are
not centered by rows so that all 12 eigenvalues are distinctly above zero but
one eigenvalue, i =1, is well above the others.
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phosphorylation loop as one might expect because Bcr-Abl ATP
binding is the driving force of the signaling cascade that results in
the outcome phenotype of transformation.
Control analyses for the possibility that the Bcr pY 644 ionizes

more efficiently than other phosphopeptides because of its two
basic residues are described in SI Appendix (section “control
analyses for ionization efficiency”). Here, we say that even when
this peptide is reduced to 1/5 of its presence, the first two con-
straints predict the oncogenicity with the same fidelity as was done
with one constraint in the unadjusted case. These constraints are
centered about a few, a minority, of the possible Bcr phosphor-
ylation sites (see SI Appendix, Figs. S4 and S8). What is quite
significant is that these few peptides include the ATP phosphor-
ylation loop of the Abl kinase. We categorically state that the
variance in the rows contains biological information because if we
mean-center each row and scale by the variance, we remove a good
deal of the structure in the data, retaining only the signal from the
off-diagonal covariance. Another test is to use a data matrix where
the rows are proteins and not phosphorylation sites. This test is
possible by representing the intensity of each protein as an evenly
weighted average of the contributions from all its phosphorylation
sites. Such a compaction of the data matrix leads to a covariance
matrix that needs three constraints for its characterization and to
predict the phenotype. These tests lend further support to the
suggestion that the fine structure in the cellular choice of phos-
phorylation sites carries essential biological information.

V. Relation to Other Methods
An important goal of systems biology, especially in applications
toward medicine, is to be able to take a set of signaling measure-
ments and infer something about the phenotype of a new sample.
Cross-validation is a standard method for validating such infer-
ence (21). Leave one out cross-validation, LOOCV, requires
leaving one sample out from the known phenotypic output and
trying to infer the phenotypic output for the one sample that is left
out. In SI Appendix, Figs. S6 and S7, we show that LOOCV works
well for predicting the potency of an oncogene that is left out, using
themeasured potencies of the other 11 oncogenes. In comparison,
Fig. 4 shows that the entire output can be predicted given notmore
than three output vectors and that even just one output provides a

reasonable inference. These vectors are generated only from the
phosphorylation data and do not use any measured potency in the
prediction of the relative potencies.
In the method of principal component analysis (PCA), one

seeks to find an effective reduced representation for the matrix
XTX by diagonalizing it and sorting the eigenvectors by the size
of the corresponding eigenvalues. One then uses one or more of
these eigenvectors to provide a reduced rank approximation for
both the matrix XTX and for the data matrix itself. The principal
components that are retained in PCA are exactly our constraints.
From the constraints we get the entire distribution (Eq. 3). The
results of PCA are only the averages over the distribution.

VI. The Information That the Data X Conveys About the
Phenotypic Output Y
Shannon has argued that the information conveyed by X about Y
and often denoted as IðY;XÞ must be given by the uncertainty
about Y when the data X is not known minus any remaining
uncertainty about the output Y once X is known (30):

IðY;XÞ ¼ HðYÞ−HðYjXÞ: [7]

As in section II, H denotes the entropy and HðYjXÞ denotes the
entropy of Y when X is given. The entropy HðYjXÞ cannot exceed
HðYÞ because acquiring the data cannot increase our uncertainty
about the output. Therefore, the information that X provides
about Y is always positive or zero.
For the typical system biology experiment in steady state, we

have argued that it is to be expected that mathematically X fully
determines Y. Then, when X is given, there is no residual un-
certainty aboutY, so thatHðYjXÞ ¼ 0. FromEq. 7 the information
that X provides about Y isHðYÞ, the entropy of Y. In other words,
knowing X removes any uncertainty about Y. In SI Appendix, we
discuss the more general case when HðYjXÞ is not zero because
some uncertainty about the output Y remains even when the data
are given. This case is discussed in SI Appendix.

Fig. 3. The correlation coefficient between the output phenotype vector
and the different eigenvectors (equals the constraints) (Eq. 6), arranged
by decreasing order of their corresponding Lagrange multipliers, λi. The
same index labeling is as in Fig. 2. See section IV for a discussion of the
correlation coefficients. The cumulative contribution of the constraints,
∑i

j¼1jαjj2, is shown on the right ordinate. The dominant constraint, i = 1,
accounts for 58% of the total. The first two constraints already account for
71% of the total and, as seen in Fig. 4, they almost suffice to predict the
output. Adding the third fourth,. . . constraints does not add much to the
accuracy of the description of the output. A possibly significant increase
occurs when adding the eighth constraint (possibly because it is just above
the noise level).

Fig. 4. The oncogenic potencies (Yn; mean centered) and the error bars
(SEM) for the different oncogenes. See SI Appendix and ref. 5 for details on
how the potency phenotypes are defined in terms of directly measured
values. Also shown are the values of the potencies predicted by using one,
two, or three constraints. (The third constraint is indexed 8; Fig. 3). Using all
12 constraints will exactly recover the potencies. Note, however, that
including just the two leading constraints already is rather adequate.
Because the potencies are mean centered no additional input is required for
the prediction as shown. To predict the absolute values we need to know
one potency or an equivalent input that sets the scale.

6116 | www.pnas.org/cgi/doi/10.1073/pnas.1001149107 Graeber et al.

http://www.pnas.org/content/vol0/issue2010/images/data/1001149107/DCSupplemental/stxt01.pdf
http://www.pnas.org/content/vol0/issue2010/images/data/1001149107/DCSupplemental/stxt01.pdf
http://www.pnas.org/content/vol0/issue2010/images/data/1001149107/DCSupplemental/stxt01.pdf
http://www.pnas.org/content/vol0/issue2010/images/data/1001149107/DCSupplemental/stxt01.pdf
http://www.pnas.org/content/vol0/issue2010/images/data/1001149107/DCSupplemental/stxt01.pdf
http://www.pnas.org/content/vol0/issue2010/images/data/1001149107/DCSupplemental/stxt01.pdf
http://www.pnas.org/content/vol0/issue2010/images/data/1001149107/DCSupplemental/stxt01.pdf
http://www.pnas.org/content/vol0/issue2010/images/data/1001149107/DCSupplemental/stxt01.pdf
http://www.pnas.org/content/vol0/issue2010/images/data/1001149107/DCSupplemental/stxt01.pdf
http://www.pnas.org/content/vol0/issue2010/images/data/1001149107/DCSupplemental/stxt01.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1001149107


To predict, we seek a linear transformation A from the data to
the output where A is to be computed from the data only. When
the output is a vector, A is also a vector and we write

Y ¼ XTA þ ey; [8]

where the yet unknown vector A has P components and heyi ¼ 0
when the output is mean-centered. The transpose data matrix XT

has the dimensions N by P so that the output Y has N compo-
nents, as expected.
To find A we appeal to the result above that the information

that we can extract from the data is maximal when the entropy of
Y is maximal. In SI Appendix, we show that this choice of A is
equivalent to the procedure discussed in section IV.

VII. Concluding Remarks
Our final aim is to predict the oncogenic potency from the meas-
ured data of the intensity of phosphorylation events for each

oncogene. The data can be organized as amatrixXwhere the rows
are the phosphorylation events and the data for each oncogene is a
column (see Fig. 1 and SI Appendix, Fig. S9). We show that for the
common case of high throughput, more events than oncogenes,
the prescription is to diagonalize the square, nonnegative, matrix
XTX. Arrange the eigenvalues by their size. If there is one eigen-
value that is by far larger, as is the case for the data examined here,
there is one dominant constraint that is obtained as the corre-
sponding eigenvector. This constraint predicts the phenotype with
realistic accuracy. Including additional constraints, arranged by
the decreasing size of the eigenvalues, improves the prediction.
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